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Supersmooth Topoi
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It is well known that supersmooth functions are more akin to holomorphic
functions than to smooth functions. The ultimate object of study in complex
geometry is not merely complex manifolds, but complex spaces, in which
holomorphic functions may be nilpotent and consequently invisible from a
geometric viewpoint. Supergeometers have long been searching for an appropriate
definition of supermanifold, for which many classical results in the theory of
smooth manifolds can naturally be superized. However, they have not proceeded
further in quest of a supersmooth equivalent of complex space. The principal
object of this paper is to introduce the notion of supersmooth superspace into
supergeometry after the classical definition of complex space in complex
geometry, and then to build a good model of synthetic supergeometry after the
manner of Dubuc and Taubin (1983), thereby superseding Yetter (1988). The
model to be constructed is a Grothendieck topos encompassing the category of
G`-supermanifolds and G`-mappings as a full subcategory.

INTRODUCTION

Supergeometry is a fascinating subject of study to both physicists and
mathematicians. It enables physicists to deal with bosons and fermions on
an equal footing, leading naturally to supergravity. It is the introductory and
easiest part of noncommutative geometry, whose core is by no means easy
to unravel. It is a good gymnasium where novices to noncommutative geome-
try can raise and polish their intuitions. The central object of study in superge-
ometry has been no doubt supersmooth supermanifolds, but the exact
definition of supersmooth supermanifold varies from one author to another.
Furthermore, how many generators the Grassmann algebra at issue should
have is disputable at best. From a physical standpoint, the convenient and
natural choice of a Grassmann algebra is one with denumerably many genera-
tors, which can naturally be rendered a Banach algebra so that supersmooth
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supermanifolds are Banach manifolds (Rogers, 1980), which determines odd
derivatives without ambiguity, and what is more important, which leads us
unquestionably to G`-supermanifolds as our supersmooth supermanifolds.
Our choice of G`-functions as supersmooth functions is physically relevant,
since they correspond directly to superfields, while H`-functions do not. As
far as Grassmann algebras with infinitely many generators are concerned,
the category of G`-supermanifolds and G`-mappings conforms to Rothstein’s
(1986) axiomatics so that we do not need to bother ourselves with such a
generalization of G`-supermanifolds as G-supermanifolds of Bartocci et al.
(1987, 1989) or such a modification of G`-functions as GH`-functions of
Rogers (1986).

It was Grothendieck who renewed algebraic geometry in the middle of
the 20th century by employing category theory (e.g., representable functors)
systematically and insisting on the significance of nilpotent elements in rings.
His approach culminated in what is now called scheme theory and constitutes
the core of modern algebraic geometry for any neophyte to digest. Lawvere,
inspired by Grothendieck’s scheme theory, struggled in the 1960s to revive
the then moribund idea of nilpotent infinitesimals in differential geometry
by exploiting his favorite machinery of category theory. While the significance
of the former approach is now well recognized and appreciated in the contem-
porary mathematical community, the latter approach, referred to as synthetic
differential geometry, remains in the doldrums and has not attracted the
attention and momentum that it deserves. The so-called tensor analysis on
infinitesimal entities (e.g., vector fields) in orthodox differential geometry
is often stodgy and factitious, concealing the truly infinitesimal nature of
infinitesimal considerations under a topsy-turvy of lengthy calculations in a
dull drone. Synthetic differential geometry enables us to endow differential
geometry with an infinitesimal horizon relatively independent of local and
global ones. For good textbooks on synthetic differential geometry the reader
is referred to Lavendhomme (1996) (devoted mainly to a consistently axio-
matic presentation of synthetic differential geometry) and Moerdijk and Reyes
(1991) (devoted to model theory of synthetic differential geometry) as well
as Kock’s 1981b bible of the field.

Nishimura (1998, 1999, 2000) has developed synthetic supergeometry
up to superconnections from an axiomatic standpoint, while Yetter (1998)
has made a fresh start in model theory of synthetic supergeometry, committing
himself to H`-functions and graded manifolds. It is well known that graded
manifolds are essentially tantamount to DeWitt supermanifolds, whatever
definition of supersmooth function we adopt (H`, G`, or GH`), for which
the reader is referred to Batchelor (1980) and Bartocci et al. (1991, Chapter
V, §4). It is also well known that a DeWitt supermanifold or a graded manifold
is virtually equivalent to the exterior bundle of a vector bundle over a smooth
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manifold, as was demonstrated by Batchelor (1979). This is why Yetter (1988)
was able to transfer so smoothly from the smooth paradigm to the supersmooth
or rather graded paradigm. Since not all supersmooth supermanifolds are
DeWitt supermanifolds and, as we have claimed, H`-functions are not physi-
cally relevant, we should say that Yetter’s (1988) model theory of synthetic
supergeometry is somewhat too restrictive in our present paradigm of superge-
ometry. The leitmotif of this paper is to give a good model of synthetic
supergeometry, possibly to be called a supersmooth topos, which is a Grothen-
dieck topos containing the category of G`-supermanifolds and G`-mappings
as a full subcategory.

It is well known that supersmooth functions are more akin to holomorphic
functions of complex analysis than to smooth functions of real analysis.
Therefore it is natural to build our model theory of synthetic supergeometry
not directly after the standard manner of Moerdijk and Reyes (1991), but
after the manner of Dubuc and Taubin (1983). This consequently forces us
to coin a supersmooth equivalent of the classical notion of complex space
in complex geometry (Grauert and Remmert, 1984), which is much more
general than the notion of supersmooth supermanifold. Supersmooth
superspaces to be introduced in Section 3 are the desired equivalent, and
will play the same role in our model theory of synthetic supergeometry as
finitely generated C`-rings have played in the standard model theory of
synthetic differential geometry. Once supersmooth superspaces are intro-
duced, we can follow the standard route to build the desired Grothendieck
topos as an appropriate model of synthetic supergeometry, which we will do
in Section 4. Sections 1 and 2 are devoted respectively to a review of
supersmooth functions and a treatment of supersmooth superrings after Dubuc
and Taubin’s (1983) good exposition of analytic rings.

1. SUPERSMOOTH FUNCTIONS

We denote by B` the Grassmann algebra over denumerable generators
in the sense of Rogers (1980, p. 1353), which is naturally to be seen as a
Banach algebra. The even part of B` is denoted by B0

`, while its odd part is
denoted by B1

`. We denote (B0
`)m 3 (B1

`)n by Bm,n
` (m, n $ 0). We note that

B0,0
` consists of a single point. A smooth function f from an open subset U

of Bm,n
` to B` is said to be G` or supersmooth if its Fréchet derivative Df is

B0
`-linear at each point of U. For the equivalence of this friendly definition

of G` to Rogers’ (1980) original one, the reader is referred to Jadczyk and
Pilch (1981, §5). Given an open subset U of Bm,n

` , we denote by &`(U ) the
sheaf of germs of supersmooth functions into B`. We denote by O the category
of open subsets of Bm,n

` ’s as objects and supersmooth functions as morphisms.
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Hadamard’s lemma and the implicit function theorem for G`, which are
to be presented in the following, are fundamental in the development of our
theory of supersmooth topoi.

Lemma 1.1. Let U be a convex open subset U of B1,0
` or B0,1

` and V an
open subset of Bm,n

` . Let f : U 3 V → B` be a supersmooth function. Then
there exists a supersmooth. function g: U 3 U 3 V → B` such that

(1.1) f ( y, z) 2 f (x, z) 5 ( y 2 x) g(x, y, z)

for any (x, y, z) P U 3 U 3 V.

Proof. Take g(x, y, z) 5 *1
0 D1 f (x 1 t( y 2 x), z) dt, where D1 f denotes

the partial derivative of f with respect to the first component. n

Theorem 1.2. Let U # Bm1,n1
` and V# Bm2,n2

` be open subsets, and f : U
3 V → Bm3,n3

` a supersmooth function such that f(x0, y0) 5 0 at some (x0,
y0) P U 3 V. Let us suppose that the second partial derivative D2 f (x0, y0)
of f at (x0, y0) is invertible. Then there exists an open neighborhood W of x0

in Bm1,n1
` and a supersmooth function g: W → V such that f (x, g(x)) 5 0 for

all x P W.

Proof. See, e.g., Theorem 2.8 of Cianci (1990). n

2. SUPERSMOOTH SUPERRINGS

Let E be a finitely complete category. Given two functors F and G from
0 to E, a natural transformation p: F → G is said to be local if for all open
inclusions U , V in O the square

F(U ) → F(V )
pU↓ ↓pV

G(U ) → G(V )

is a pullback in E.
A supersmooth superring in a finitely complete category E is a functor

F: O → E preserving transversal pullbacks and terminal objects. Morphisms
of supersmooth superrings are simply natural transformations. It is easy to
see that F(B1,1

` ) is a B`-superalgebra whose even and odd parts are respectively
F(B1,0

` ) and F(B0,1
` ).

As in Theorem 1.10 of Dubuc and Taubin (1983), the implicit function
theorem for supersmooth functions discussed in Theorem 1.2 gives the follow-
ing fundamental result on supersmooth superrings:

Theorem 2.1. Let E be a finitely comlete category and F: O → E a
functor preserving finite products and terminal objects. If there is a local
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natural transformation p: F → G with G a supersmooth superring in E
preserving open coverings, then F is a supersmooth superring in E preserving
open coverings.

Since the category Sets of sets and functions is finitely complete, we
will consider supersmooth superrings in Sets. Obviously the identity functor
of O into Sets is a supersmooth superring in Sets, which is denoted by B`

in abuse of language.
As in Theorem 1.18 of Dubuc and Taubin (1983), Lemma 1.1 and

Theorem 2.1 give

Theorem 2.2. Let p: G → B` be a local morphism of supersmooth
superrings in Sets. Let I be a superideal of the B`-superalgebra G(B1,1

` ). Then
there exists a unique supersmooth superring, denoted by G/I, together with
a unique morphism n: G → G/I of supersmooth superrings and a unique
morphism p8: → G/I → B` of supersmooth superrings such that
(G/I )(B1,1

` ) 5 G(B1,1
` )/I, nB1,1

` is equal to the canonical morphism
G(B1,1

` ) → G(B1,1
` )/I as B`-superalgebras, and p 5 p8 + n.

3. SUPERSMOOTH SUPERSPACES

Given a topological space X, we denote by SX the category of sheaves
of sets on X, which is surely finitely complete. We denote by Top the category
of topological spaces and continuous functions. The assignment of the object
Top (?, U ) in SX to each object U in O determines a functor from O to SX ,
which is surely a supersmooth superring in SX and which is denoted by @`,X.
An ordered pair (X, ^X) of a topological space X and a supersmooth superring
^X in SX is called a supersmoothly superringed superspace if there exists a
local morphism p: ^X → @`,X of supersmooth superrings. The notion of a
morphism of supersmoothly superringed superspaces can be defined after
the manner of ringed spaces, and the resulting category of supersmoothly
superringed superspaces is denoted by SupS. Given an object U in O, the
assignment of the object O(?, V ) in SU to each object V in O determines a
functor from O to SU , which is surely a supersmooth superring in SU furnished
with the canonical local morphism of supersmooth superrings into @`,U and
which is denoted by &`

U. Thus the ordered pair (U, &`
U) is a supersmoothly

superringed superspace, and the assignment of the supersmoothly superringed
superspace (U, &`

U) to each object U in O determines a functor from O to
SupS to be denoted by iO, SupS. The underlying topological space X and the
structure sheaf ^X of a supersmoothly superringed superspace (X, ^X) is
denoted by P1((X, ^X)) and P2((X, ^X)).

By the same token as Dubuc and Taubin’s (1983). Theorem 2.8 we have:
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Theorem 3.1. For any object (X, ^X) in SupS we have the following
commutative diagram, where G denotes the global sections functor:

iO,SupS
O –—→ SupS

^X↓ ↓SupS((X, ^X), ?)
G

SX –—→ Sets

By the same token as Dubuc and Taubin’s (1983), Theorem 2.10, we
have:

Theorem 3.2. Given an object U in O and an arbitrary sheaf = of
superideals in the sheaf &` (U ) of superrings, we define E to be the support
Supp (&`(U )/=) of the quotient sheaf &`(U )/=. Then there exists a unique
supersmooth superring &`

E in SE together with a local morphism
lE: &`

E → @`,E of supersmooth superrings such that the superring &`
E(B1,1

` ) in
SE is equal to the restriction of the sheaf &`(U )/= to E. Thus the pair
(E, &`

E) is naturally a supersmoothly superringed superspace.

In the above theorem, if the sheaf = of superideals is of finite type,
then the resulting supersmoothly superringed superspace (E, &`

E) is called a
supersmooth model superspace. A supersmoothly superringed superspace (X,
^X) is called a supersmooth superspace if the topological space X is Hausdorff
and every point x of X has an open neighborhood U such that the restriction
of the supersmoothly superringed superspace (X, ^X) to U is isomorphic to
a supersmooth model superspace. We denote by SupS the full subcategory
of SupS whose objects are all supersmooth superspaces. The category of
supersmooth supermanifolds and supersmooth mappings in the sense of Rog-
ers (1980) is denoted by SupM.

It is straightforward to show that:

Proposition 3.3. The canonical embedding iSupM, SupS: SupM → SupS
is full and faithful, and preserves transversal pullbacks and terminal objects.

Proof. By Bartocci et al. (1991, Chapter II, Corollary 4.3). n

By such a familiar token of algebraic geometry and complex geometry
as seen in Hartshorne (1977, Chapter II, Theorem 3.3) and Grauert and
Remmert (1984, Chap. 1, §3. Theorem 4) we have

Theorem 3.4. The category SupS is finitely complete.

4. SUPERSMOOTH TOPOI

We will first show that the topos SetsSupSop
has many features of a good

model of synthetic supergeometry, and then will indicate in brief how to
modify it so as to get a better model.
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The following proposition is an instance of the well-known fundamental
result on Yoneda embeddings (cf. (MacLane, 1971, Chapter II, §2).

Proposition 4.1. The Yoneda embedding ySupS: SupS → SetsSupSop
is

full and faithful.

We denote the composition ySupS + iSupM, SupS by ySupM.

Corollary 4.2. The embedding ySupM: SupM → SetsSupSop
is full and

faithful.

Proof. This follows directly from Propositions 3.3 and 4.1. n

The following proposition is an instance of a well-known fact on Yoneda
embeddings (cf. Schubert, 1972, Theorem 10.2.5).

Proposition 4.3. The Yoneda embedding ySupS: SupS → SetsSupSop
pre-

serves limits.

Corollary 4.4. The embedding ySupM: SupM → SetsSupSop
preserves

transversal pullbacks and terminal objects.

Proof. This follows directly from Propositions 3.3 and 4.3. n

In our synthetic supergeometry (Nishimura, 1998, 1999, n.d.) the set of
superreal numbers is denoted by R and is required to abide by an appropriate
superization of the general Kock axiom. The assignment of the set
G(^X(B1,1

` )) of global sections of the sheaf ^X(B1,1
` ) to each supersmooth

superspace (X, ^X) naturally gives rise to a contravariant functor from Sups
to Sets, which shall be the interpretation of R in the topos SetSSupSop

. We
will loosely use the same symbol for both such an entity of synthetic superge-
ometry as R and its interpretation in such an appropriate topos as
SetsSupSop

. It is easy to show that:

Proposition 4.5. R is a superring in the topos SetsSupSop
.

Proposition 4.6. The contravariant functor R from the category SupS
to the category Sets is representable with its representing object (B1,1

` , &`
B1,1

` ).

Proof. This follows readily from Theorem 3.2, just as Corollary 2.9 of
Dubuc and Taubin (1983) follows from their Theorem 2.8. n

Theorem 4.7. The contravariant functor RR from the category SupS
to the category Sets is naturally isomorphic to the contravariant functor
assigning G(P2((X, ^X) 3 (B1,1

` , &`
B1,1

` ))(B1,1
` )) to each supersmooth superspace

(X, ^X).

Proof. We have that
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(4.1) RR ((X, ^X))

5 SetsSupSop
(SupS(?, (X, ^X)) 3 R, R)

[Formula (5) of MacLane and Moerdijk (1992,

Chapter I, §6)]

5 SetsSupSop
(SupS(?, (X, ^X)) 3 SupS(?, (B1,1

` , &`
B1,1

` )),

SupS(?, (B1,1
` , &`

B1,1
` ))) [Proposition 4.6]

5 SetsSupSop
(SupS(?, (X, ^X) 3 (B1,1

` , &`
B1,1

` )),

SupS(?, (B1,1
` , &`

B1,1
` )))

5 SupS((X, ^X) 3 (B1,1
` , &`

B1,1
` ), (B1,1

` , &`
B1,1

` ))

[Yoneda lemma]

5 G(P2((X, ^X) 3 (B1,1
` , &`

B1,1
` ))(B1,1

` ))

[Proposition 4.6]

which establishes the desired theorem.

Now we will discuss the interpretation of the spectrum SpecR(M) of a
Weil superalgebra M in R within the topos SetsSupSop

. It is easy to see that:

Proposition 4.8. The interpretation of M in the topos SetsSupSop
is the

contravariant functor assigning G(^X(B1,1
` )) 3 M((B0,0

` , &`
B0,0

` )) to each super-
smooth superspace (X, ^X).

It is easy to show that:

Proposition 4.9. The contravariant functor SpecR(M) from the category
SupS to the category Sets is representable with its representing object
(B0,0

` , }((B0,0
` , &`

B0,0
` ))).

Theorem 4.10. The contravariant functor RSpecR(M) from SupS to Sets
is naturally isomorphic to the contravariant functor M.

Proof. For each supersmooth superspace (X, ^X) we have that

(4.2) RSpecR(M)((X, ^X))

5 SetsSupSop
(SupS(?, (X, ^X)) 3 SpecR(M), R)

[Formula (5) of Maclane and Moerdijk (1992,

Chapter I, §6)]
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5 SetsSupSop
(SupS(?, (X, ^X))

3 SupS(?, (B0,0
` , M((B0,0

` , &`
B0,0

` )))),

SupS(?, (B1,1
` &`

B1,1
` )))

[Propositions 4.6 and 4.9]

5 SetsSupSop
(SupS(?, (X, ^X) 3 (B0,0

` , M((B0,0
` , &`

B0,0
` ))))

SupS(?, (B1,1
` , &`

B1,1
` )))

5 SupS((X, &X) 3 (B0,0
` , M((B0,0

` , &`
B0,0

` )))

(B1,1
` , &`

B1,1
` )) [Yoneda lemma]

5 G(P2((X, ^X) 3 (B0,0
` , M((B0,0

` , &`
B0,0

` ))))(B1,1
` ))

[Proposition 4.6]

5 G(^X(B1,1
` )) 3 M((B0,0

` , &`
B0,0

` ))

5 M((X, ^X)) [Proposition 4.8]

which establishes the desired theorem. n

The embedding ySupS: SupS → SetsSupSop
does not preserve open covers

simply because not all the functors in SetsSupSop
believe this. By cutting down

the universe SetsSupSop
to those functors which believe that all open covers

in SupS are covers in SetsSupSop
, we get a better universe for synthetic

supergeometry to be called the supersmooth Zariski topos2 and to be denoted
by ZSupS. Formally the topos ZSupS is obtained by considering open covers
as covering families of a Grothendieck topology on SupS and then considering
all the sheaves with respect to this Grothendieck topology.

It is easy to show that:

Proposition 4.11. The Grothendieck topology is subcanonical. In other
words, the Yoneda embedding ySupS: SupS → SetsSupSop

factors through
ZSupS → SetsSupSop

This guarantees that statements about ZSupS correspond directly to state-
ments about supersmooth superspaces. Now it is not difficult to show in a
standard way that the topos ZSupS not only enjoys all the properties of its
preceding topos SetsSupSop

discussed so far (surely with due modifications),

2 We now feel that what is called the supersmooth Zariski topos in the paper should be called
the supersmooth Dubuc topos.
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but also preserves open covers, the details of which are safely left to the
reader (cf. MacLane and Moerdijk, 1991. Chapters III and VI).
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Catégoriques, 24, 225–265.
Eisenbud, D. (1995). Commutative Algebra with a View toward Algebraic Geometry, Springer-

Verlag, New York.
Gawedzki, K. (1977). Supersymmetries—mathematics of supergeometry, Annales de l’Institute
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entielle Catégoriques, 29, 87–108.

FIRST PAGE PROOFS


